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Abstract

A new series of six comprehensive descriptors that represent different features of the gas—liquid partition coefficient, K|,
for commonly used stationary phases is developed. These descriptors can be considered as counterparts of the parametersin
the Abraham solvatochromic model of solution. A separate multiple linear regression (MLR) model was developed by using
the six descriptors for each stationary phase of poly(ethylene glycol adipate) (EGAD), N,N,N’,N’-tetrakis(2-hydroxypropy!)
ethylenediamine (THPED), poly(ethylene glycol) (Ucon 50 HB 660) (US0HB), di(2-ethylhexyl)phosphoric acid (DEHPA)
and tetra-n-butylammonium N,N-(bis-2-hydroxylethyl)-2-aminoethanesulfonate (QBES). The results obtained using these
models are in good agreement with the experiment and with the results of the empirical model based on the solvatochromic
theory. A 6-6-5 neural network was developed using the descriptors appearing in the MLR models as inputs. Comparison of
the mean square errors (MSES) shows the superiority of the artificial neural network (ANN) over that of the MLR. This
indicates that the retention behavior of the molecules on different columns show some nonlinear characteristics. The
experimental solvatochromic parameters proposed by Abraham can be replaced by the calculated descriptors in this work.
0 2000 Elsevier Science BV. All rights reserved.

Keywords: Stationary phases, LC; Multiple linear regression; Artificial neural network; Retention behavior

1. Introduction

For many years chromatographers have sought a
method to characterize the solvation properties of
stationary phases used in gas chromatography (GC)
with the goal of providing a rational approach for
selection of an optimum phase for a given separation
and to predict retention of solutes on different
phases. The most common solvent selectivity scales
for gas—liquid chromatography being the system of
phase constants proposed by Rohrschnaider [1,2] and
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later modified by McReynolds [3], Snyder’s solvent
selectivity triangle [4,5], dispersion selectivity in-
dices [6,7], Hawkes polarity indices [8,9], solubility
parameters [10,11], solvatochromic parameters
[12,13] and several thermodynamic approaches [14—
16].

The principa interactions that affect the solubility
of asolvent in aliquid phase, and therefore retention,
are dispersion, induction, orientation, and donor—
acceptor interactions, including hydrogen bonding
[17,18].

Dispersion (or London) forces arise from the
electric field generated by rapidly varying dipoles
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formed between nuclel and electrons at zero-point
motion of the molecules. These forces are universal
and independent of temperature. Induction (or
Debye) forces arise from the interaction of a perma-
nent dipole with a polarizable molecule. Orientation
(or Keesom) forces arise from the net attraction
between the molecules or portions of the molecules
possessing a permanent dipole moment. Induction
and orientation forces decrease with increasing tem-
perature and at a sufficient high temperature dis-
appear entirely as al orientations of the dipoles
become equally probable. Complementing these
physical interactions are donor—acceptor interactions
of a chemical nature.

Different features of the gas—liquid partition co-
efficient, K_, can be considered by using the cavity
model of solvation [19]. The model assumes that the
transfer of a solute from the ideal gas state to the
solvent at the infinite dilution requires: (1) the
creating of a cavity in the solvent of suitable size to
accommodate the solute; (2) reorganization of the
solvent molecules around the cavity (the Gibbs
energy change for this process is probably very small
compared with the other changes); and (3) inter-
action of the solute molecule with the surrounding
solvent molecules represented by the sum of the
individual Gibbs energy contributions to the solva-
tion process [19]. As demonstrated by Abraham and
co-workers these changes can be described by the
equation:

logK, =c+ IR, + s, +aah +bgY +1logL™
(1)

where K, is the solute gas-liquid partition coeffi-
cient, ¢ is a constant, R, is the solute excess molar
refraction, 75 is the effective solute dipolarity/
polarizability parameter, o} is the effective hydro-
gen-bond acidity, B85 is the effective hydrogen-bond
basicity and L*° is the gas-liquid partition coeffi-
cient of the hexadecane at 25°C. This modd is
similar to the solvatochromic theory of solution
except that the explanatory variables R, 75, af, 85
and log L*® are solvation parameters derived from
the equilibrium measurements and further refined
(and augmented) by multiple linear regression analy-
sis of solvents of assumed characteristic properties.
The solvent parametersr, s, a, b and | are unambigu-

oudy defined: the r constant refers to the ability of
the solvent to interact with the solute w- and n-
electron pairs; the s constant refers to the ability of
the solvent to take part in dipole—dipole and dipole—
induced dipole interactions; the a constant is a
measure of the hydrogen-bond basicity of the sol-
vent; the b constant is a measure of the hydrogen-
bond acidity of the solvent; and the | constant
incorporates contributions from solvent cavity forma-
tion and dispersion interactions, and more specifical-
ly in gas—liquid chromatography indicates how well
the solvent will separate members in a homologous
series. Experimentally, the solvent specific constants
are determined from a number of measurements of
log K, for solutes with known explanatory variables
using multiple linear regression analysis [20—22].

Li et al. have proposed a similar model to that of
Eqg. (1) [23]. However, their model differs in the
values taken for the explanatory variables and in the
use of an empirical correction term for the influence
of the polarizability of the solute on the estimate of
the dipole-type interactions. Kollie and co-workers
[24,25] have used a general expression, Eq. (2), to
represent the various free energy contributions to the
solvation process:

AGEH(X) = AGEY (X) + AGY(X) + AGE(X)
2

where AG "V (X) is the partial Gibbs free energy of
solution for the transfer of solute X from the gas
phase to the stationary phase S; AGS™Y(X) is the
partial Gibbs free energy of cavity formation for
solute X; AGLY"(X) and AGE(X) are the partial Gibbs
free energies of the interactions of the nonpolar and
polar contributions of solute X with the surrounding
solvent, respectively.

The main aim behind modeling is the prediction of
different quantities and at the same time to reduce
the consumption of solvents and expensive chemi-
cals. Therefore, we believe that the generated models
should mainly contain calculated descriptors instead
of empirical ones. Keeping this in mind, we have
attempted to develop the multiple linear regression
(MLR) and artificial neural network (ANN) models
to predict the log K, by using a new series of
descriptors that are calculated parameters. These
descriptors should represent different interactions
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that affect the retention phenomena in the chromato-
graphic studies. The results of the present work show
that the Abraham’'s empirical parameters can be
replaced by a series of calculated descriptors in
modeling of the gas—liquid partition coefficients of a
variety of compounds.

2. Experimental

This work contains four stages: (1) selection of
data set, (2) regression analysis, (3) ANN generation
and (4) evaluation of the models.

2.1. Data set

The data set was selected from Ref. [25]. This set
consists of 54 molecules that were randomly divided
into two groups, training set and prediction set. The
training set consists of 39 compounds from a variety
of organic compounds and the prediction set consists
of 15 compounds. The prediction set is a good
representative of the training set. The names of the
test solutes used in this study are summarized in
Table 1.

2.2. Regression analysis

Six descriptors were calculated for interpreting
solute—solvent interactions in the present work.
These descriptors consist of the dipole moment
(DIPOL), the highest occupied molecular orbital
(HOMO), the partia charge of the most negative
atom (PCHNEG), the partial charge of the most
positive hydrogen (PCHPOSH), molecular mass (M, )
and van der Waals volume (VOLUME) (see Table
3). The quantum—mechanical descriptors of DIPOL,
HOMO, PCHNEG and PCHPOSH were obtained
using the MOPAC program (version 6) [26]. The van
der Waals volume was calculated using a program
called BASPRO that was developed in our laboratory
[27]. The MLR models were generated by SPSS (for
windows 6.0) software [28].

2.3. Neural network generation

The detailed theory behind an artificial neural
network is adequately described elsewhere [29,30].

Table 1

Chemical names of the molecules studied in this work
No. Compound
Training set

1 n-Octane

2 Pentan-2-one

3 Methyl octanoate

4 Dimethyl sulfoxide
5 n-Undecane

6 Methyl nonanoate
7 Benzodioxane

8 cis-Hydrindane

9

Butan-1-ol
10 Dodecane
11 n-Hexadecane
12 N,N-Dimethylacetamide
13 n-Butylbenzene
14 n-Tridecane
15 Methylhexanoate
16 Hexan-2-one
17 Decan-2-one
18 Di-n-hexyl ether
19 Heptan-1-ol
20 n-Pentadecane
21 N,N-Dibutylformamide
22 Benzene
23 1-Dodecyne
24 Methyl tetradecanoate
25 Dioxane
26 Nonan-2-one
27 2-Methylpentan-2-ol
28 Nitrobenzene
29 Nonanal
30 Heptan-2-one
31 Nonan-1-ol
32 Anisole
33 Dodecan-2-one
34 Benzonitrile
35 Methyl dodecanoate
36 n-Decane
37 Methyl decanoate
38 Methyl octanoate
39 Nitropropane
Prediction set
40 2-Octyne
41 Phenyl ether
42 1-Nitrohexane
43 Nitrocyclohexane
44 4-Phenyl-1,3-dioxane
45 n-Nonane
46 n-Tetradecane
47 Octan-2-one
48 Undecan-2-one
49 Methylheptanoate
50 Methylundecanoate
51 Methylhexadecanoate
52 Octan-1-ol
53 N,N-Dimethylformamide
54 Nitropentane
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Therefore, only the points relevant to this work are
described here.The ANN program was written in
FORTRAN 90 in our laboratory. A back-propagation
strategy was used for the training of the network
[31]. Before learning the network, the input vector
and output values were normalized between 0.1 and
0.9. The normalizing of the output values between
0.1 and 0.9 allows the network to dlightly exceed the
minimum and maximum values that were given in
the original data file. A sigmoidal function was used
as transfer function for the network. The initia
weights were selected randomly between —1 and 1.
Before training of the ANN, the network parameters
were optimized. The optimization strategy was de-
scribed elsewhere [32,33]. The optimum number of
neurons in the hidden layer, momentum and learning
rate were 6, 0.4 and 0.2, respectively. Then the
network was trained with training set for the optimi-
zation of the weights and biases values using back-
propagation strategy. The trained network was used
for the prediction of log K, _ of the compounds
included in the prediction set.

3. Results and discussion

The main aim of the present work was to define a
series of new descriptors that have two properties.
First, that they can be used as a genera parameters.
This means that they can describe the retention
behaviors of a variety of organic compounds on
commonly used GC stationary phases. Second, that
they can be obtained by calculations and in fact can
be replaced by empirical parameters. To fulfil the
generality of descriptors one needs a very diverse
data set. Therefore as can be seen in Table 1 a data
set consisting of alkanes, alcohols, ketones, ethers,

esters, amides, sulfoxides, nitrile and nitro-contain-
ing compounds was chosen to develop the appro-
priate models. The prediction set also consists of
different molecules included in the training set and
adequately represents the training set.

The next step was choosing the descriptors. Since
it was shown that the cavity model is useful in
predicting the gas—liquid coefficient, K, of different
compounds [24,34,35], we have tried to generate a
series of calculated parameters that in some way
represent different parameters included in Eq. (1),
i.e, R, 7, ab, B% and log L*°. Among different
parameters defined, a total of six descriptors, DIPOL,
HOMO, PCHNEG, PCHPOSH, M, and VOLUME
show some correlations with Abraham’s solvato-
chromic parameters. Table 2 shows these correla
tions.

The parameter HOMO is a measure of the ability
of a molecule to interact with the - and n-electron
pairs of the other molecules. It can be seen from
Table 2 that this parameter shows a correlation
coefficient of 0.697 with the solute excess molar
refraction, R,. The counterpart of the 7} parameter
in the Abraham’s equation is the DIPOL which is the
dipole moment of the molecules. Both parameters of
the 7 in the solvatochromic model of Abraham and
the DIPOL in our models, represent the ability of a
molecule to take part in dipole—dipole and dipole—
induced dipole interactions. The parameters of a
and B} show some correlation with the PCHPOSH
and PCHNEG descriptors, respectively. It is obvious
that the partial charges of the most positive hydrogen
and the partial charges of the most negative atom can
be considered as a measure of acidity and basicity of
a molecule, respectively. However, as can be seen
from Table 2, correlation between these parameters
and their counterparts in Abraham’'s equation are

Table 2

Correlations between the solvatochromic parameters and different parameters studied in this work

Descriptor® R, y al By Log L™
DIPOL 0.270 0.790 —0.046 0.530 -0.315
HOMO 0.697 0.389 —0.044 0.386 —0.107
M, —-0.350 -0.295 -0.324 —0.168 0.928
PCHNEG 0.156 —0.473 —0.154 —0.542 0.247
PCHPOSH 0.487 0.445 0.535 0.426 —0.500
VOLUME —-0.523 —0.488 —0.261 -0.315 0.914

® Definition of descriptors is given in the text.
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Table 3
The calculated values of different descriptors for all of the molecules studied in this work®
No?” PCHNEG M, DIPOL HOMO PCHPOSH VOLUME
1 —0.2104 114.23 0.00 —11.07 0.0787 146.74
2 —0.2909 86.13 2.79 —10.53 0.1069 98.72
3 —0.3505 158.24 1.67 —-11.21 0.1182 174.38
4 —0.7780 78.13 3.95 —9.53 0.1280 70.81
5 -0.2104 156.31 0.01 —11.06 0.0787 197.21
6 —0.3505 172.27 1.66 —11.18 0.1182 191.41
7 —0.2000 136.15 0.91 —-894 0.1498 128.14
8 —0.1577 124.23 0.03 —10.66 0.0874 141.65
9 —0.3292 74.12 1.52 —10.85 0.1972 87.58
10 —0.2104 170.34 0.00 —11.06 0.0787 214.23
11 —0.2104 226.45 0.00 —10.97 0.0788 281.48
12 —0.3696 87.12 3.58 —-9.54 0.1200 93.57
13 —0.2107 134.22 0.34 —9.30 0.1327 155.02
14 -0.2104 184.36 0.01 —11.03 0.0788 230.95
15 —0.3505 130.19 1.68 -11.25 0.1182 140.76
16 —0.2905 100.16 2.77 —10.53 0.1027 115.52
17 —0.2906 156.27 275 —1051 0.1069 183.01
18 —0.2823 186.34 117 —10.39 0.0942 230.65
19 —0.3292 116.20 152 —10.85 0.1972 138.14
20 —0.2104 212.42 0.01 —10.99 0.0788 264.70
21 —0.3620 157.26 3.60 —9.62 0.1191 178.53
22 —0.1301 78.11 0.00 —9.65 0.1301 88.26
23 —0.2105 138.25 0.09 —10.11 0.0961 170.85
24 —0.3506 242.40 167 —11.10 0.1182 275.76
25 —0.2694 88.11 0.00 —-10.21 0.1122 86.18
26 —0.2906 142.24 2.76 —10.51 0.1069 166.12
27 —0.3257 102.18 1.65 —10.84 0.1965 121.01
28 —0.3586 123.11 5.24 —10.56 0.1709 110.18
29 —0.2908 142.24 2.78 —10.57 0.1155 166.31
30 —0.2906 114.19 2.77 —10.52 0.1069 132.41
31 —0.3292 144.26 152 —10.85 0.1973 171.85
32 —0.2117 108.14 1.25 —9.00 0.1481 113.48
33 —0.2905 184.32 2.75 —10.51 0.1069 216.65
34 —0.1349 103.12 334 —10.02 0.1450 107.07
35 —0.3505 214.35 1.67 —11.12 0.1182 242.02
36 -0.2104 142.28 0.00 —11.06 0.0787 180.46
37 —0.3505 186.29 1.67 —11.15 0.1182 208.27
38 —0.3518 298.51 167 —11.01 0.1176 343.09
39 —0.3660 89.09 450 -11.73 0.1349 84.79
40 —0.2107 110.20 0.08 —10.11 0.0961 137.18
41 —0.1731 170.21 1.25 —8.95 0.1502 172.32
42 —0.3620 137.17 4.61 —11.57 0.1359 135.52
43 —0.3661 129.16 451 —-11.35 0.1294 124.05
44 —0.2903 164.20 2.01 —9.50 0.1474 161.66
45 —0.2104 128.26 0.01 —11.06 0.0787 163.52
46 —0.2104 198.39 0.00 —-11.01 0.0788 247.97
47 —0.2906 128.21 2.75 —10.52 0.1069 148.93
48 —0.2906 170.29 2.75 —1051 0.1069 199.86
49 —0.3505 14421 1.67 —11.24 0.1182 157.45
50 —0.3505 200.32 1.66 —11.13 0.1182 225.06
51 —0.3505 270.45 1.67 —11.05 0.1182 309.45
52 —0.3292 130.23 151 —10.85 0.1972 155.05
53 —0.3605 73.09 3.69 —9.60 0.1215 76.90
54 —0.3663 117.15 459 —11.67 0.1349 118.49

“ Definition of the descriptors is given in the text.
® Numbers refer to the molecules given in Table 1.



150 M. Jalali-Heravi, F. Parastar / J. Chromatogr. A 903 (2000) 145-154

relatively low compared with the other parameters.
Thisis due to the fact that the o) and B parameters
have similar values for a large number of molecules
[20], while the values of the calculated descriptors of
PCHNEG and PCHPOSH are different for each
molecule of the data set. Another important parame-
ter in cavity model is log L*® that incorporates
contributions from solvent cavity formation and
dispersion interactions. It is obvious that as the
molecular mass and the volume of a molecule
increase, the cavitation energy and dispersion inter-
actions increase. Therefore, the parameter log L™ in
the solvatochromic model can be replaced by the
parameters M, and VOLUME in the models given in
this work (see Table 2).

Table 3 demonstrates the calculated values of
different descriptors for all of the molecules included
in the training and the prediction sets. The dipole
moment of molecules varies from 0.00 to 5.24 Debye
indicating that the data set consists of polar and
nonpolar molecules. All of the other descriptors aso
show a large variation that is due to the diversity of
molecules studied in this work.

Table 4
Specification of MLR models for different stationary phases

31 Analysis of MLR models

A separate MLR model was developed for each
stationary phase using the above mentioned descrip-
tors for which the specifications are summarized in
Table 4. The linear equations where obtained using
the ENTER strategy in the SPSS for Windows
software. The statistics for each model are also given
in this table. As can be seen the correlation co-
efficients range from 0.944 to 0.966 with F values of
44 to 75. In addition, the standard errors for different
models are low indicating the suitability and
generality of the descriptors. It is noteworthy that
except for the parameter VOLUME, the signs of the
other coefficients are the same for different station-
ary phases. The signs for the coefficients of the
parameters DIPOL, HOMO, M, and PCHPOSH are
positive and the sign of the coefficient of PCHNEG
is negative. Consideration of these signs indicates
that as these parameters increase the solute gas—
liquid partition coefficient increases. This is in
agreement with the experiment and with the empiri-
cal solvatochromic parameters of the cavity model.

Column®  Variable

DIPOL HOMO M, PCHNEG PCHPOSH VOLUME (Constant)
EGAD 0.1477 04276 0.0235 - 16863 46202 ~0.0003 3.7620
(+00361)  (+0.0619) (+0.0048) (+0.4245) (+1.2465) (+0.0041) (+0.6341)
n=39,r=0.958, F =59, SE=0.221
THPED 0.1434 0.3613 00129 ~15868 55741 0.0014 2.9767
(+00301)  (+0.0672) (+0.0052) (+0.4605) (+1.3522) (0.0044) (+0.6878)
n=39,r=0952, F =52, SE=0.240
USOHB 0.0952 0.2914 00193 ~0.7858 36905 ~0.0036 27733
(+00376)  (+0.0646) (:0.0050) (+0.4427) (+1.3000) (+0.0043) (+0.6613)
n=39, r=0.955, F =55, SE=0.231
DEHPA 0.0667 0.2955 0.0090 -1.1971 43135 0.0069 2.5414
(+00369)  (+0.0634) (+0.0049) (+0.4349) (+1.2770) (+0.0042) (+0.6496)
n=39, r =0.966, F =74, SE=0.227
QBES 0.1828 0.3668 0.0169 ~1.0050 105564 ~0.0049 26027
(+00419)  (+0.0720) (+0.0056) (+0.4936) (+1.4493) (+0.0047) (+0.7372)

n=39, r=0.944, F=44, SE=0.257

#EGAD, Poly(ethylene glycol adipate); THPED, N,N,N’,N’-tetrakis(2-hydroxypropyl)ethylenediamine; US0HB, poly(ethylene glycol)
(Ucon 50 HB 660); DEHPA, di(2-ethylhexyl)phosphoric acid; QBES, tetra-n-butylammonium N,N-(bis-2-hydroxylethyl)-2-amino-

ethanesulfonate.
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Table 5
The experimental and calculated values of log K, using the MLR and ANN models for different stationary phases®
No. EGAD THPED US0HB DEHPA QBES

Experimentt MLR ANN  Experimenta MLR ANN Experimenta MLR ANN Experimenta MLR ANN Experimenta MLR ANN
Training set
1 1.09 107 105 138 142 144 168 168 169 191 191 18 070 079 075
2 156 176 152 167 187 166 167 190 170 163 189 172 144 164 134
3 2.34 245 223 252 266 244 264 280 258 274 291 270 204 220 202
4 345 335 333 330 315 315 298 271 305 291 267 278 314 293 312
5 161 159 155 207 204 203 242 231 240 273 264 270 126 125 12
6 255 263 241 276 287 266 288 302 281 301 316 29 223 237 221
7 319 311 307 307 296 306 330 313 317 308 296 311 312 294 289
8 169 148 169 199 166 195 207 200 221 239 206 232 149 117 145
9 181 174 172 208 197 188 193 18 180 202 196 182 227 213 208
10 179 176 170 230 224 222 266 252 261 300 289 2% 142 140 137
11 249 249 257 322 309 322 364 339 35 409 389 406 219 205 212
12 293 256 284 290 255 279 266 241 269 266 235 258 264 240 274
13 214 251 211 229 268 228 248 278 246 264 293 261 192 237 188
14 1.96 194 190 253 245 245 291 274 284 327 314 323 163 157 155
15 193 208 180 205 223 197 217 237 209 220 241 214 166 188 158
16 177 191 166 1.9 205 181 191 209 18 190 211 189 163 174 144
17 262 262 252 286 289 275 289 295 275 301 311 289 242 240 228
18 220 263 219 255 308 255 266 319 269 310 357 305 179 229 177
19 247 226 218 283 258 254 270 249 247 288 269 268 289 259 256
20 231 231 232 29 288 294 340 318 330 38 364 377 201 189 1@
21 354 337 339 372 352 364 339 343 354 361 354 367 321 312 314
2 135 147 137 139 155 149 157 173 160 158 172 162 129 145 124
23 227 191 213 254 222 231 273 241 261 299 266 283 203 162 189
24 358 353 350 393 392 392 406 410 403 437 440 437 316 316 320
25 185 164 175 177 159 166 186 181 178 169 172 169 156 137 154
26 240 245 236 262 269 254 264 274 255 273 286 266 222 225 213
27 178 210 188 199 239 223 188 229 214 209 244 233 19 245 228
28 3.02 328 311 301 317 311 314 309 303 293 281 291 314 338 305
29 2.36 247 255 261 272 272 266 276 272 276 289 280 225 232 240
30 1.98 211 198 214 228 211 216 232 214 218 237 219 183 194 178
31 2.88 260 29 331 299 324 319 291 323 345 317 337 327 290 313
2 2.25 262 223 2.2 261 225 242 266 229 233 262 229 216 257 209
33 3.04 297 292 334 330 322 337 337 319 357 359 341 281 271 262
34 2.77 229 267 278 233 2712 290 242 262 265 226 257 290 241 276
35 317 317 302 346 351 339 359 367 352 383 391 379 279 285 280
36 144 141 138 184 183 18 217 210 217 246 240 243 108 110 107
37 2.75 282 261 299 309 28 311 324 304 328 341 323 241 253 241
38 441 425 434 486 476 483 500 496 492 545 540 536 391 380 384
39 1.98 196 193 200 198 204 210 198 200 189 179 194 209 200 202
Prediction set
40 15 167 173 181 18 185 199 207 202 217 221 122 132 148
4 361 350 343 358 346 365 389 364 375 343 35 387 332 328
2 3.08 255 277 281 266 290 281 267 285 281 257 281 254 274
43 2.95 267 299 303 266 303 309 271 297 297 251 286 256 290
44 372 352 347 371 345 363 371 356 365 365 345 368 330 332
45 126 124 121 161 163 163 193 189 192 218 215 214 089 094 091
46 214 212 209 276 267 268 315 296 307 355 339 350 18 173 172
47 220 228 217 238 248 233 240 253 235 246 262 242 203 210 196
48 283 280 271 310 310 297 313 316 29 329 33k 314 262 256 244
49 213 226 202 229 244 221 240 258 234 247 265 242 185 204 181
50 2.96 300 280 322 330 313 335 346 327 355 366 351 260 269 260
51 399 389 397 439 434 444 453 453 454 491 490 493 354 349 356
52 2.68 243 257 307 278 291 295 270 286 317 293 304 307 274 287
53 267 237 266 263 233 257 248 219 245 229 210 232 249 225 263
54 2.38 234 251 245 242 263 255 243 258 239 230 253 234 252

® Definition of the stationary phases is given in Table 4.
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The calculated values of log K, using the generated
MLR models are given in Table 5 for al of the
molecules included in the training and the prediction
sets. These values are given for different stationary
phases in this table. Comparison of the calculated
and the experimental values reveals that a good
agreement exists between them.

3.2 Analysis of the artificial neural network

The ANN was generated by using the descriptors
appearing in the MLR models as inputs. A 6-6-5
neural network was developed with the optimum
momentum and learning rate of 0.4 and 0.2, respec-
tively. In order to prevent the overfitting, the mean
square errors (MSEs) for the training and the predic-
tion sets were plotted against the number of itera-
tions (Fig. 1). The overfitting will start after 35500
training of the network. The ANN calculated values
of log K, for the training and the prediction sets on
different columns are included in Table 5.

To evaluate the neural network, the MSEs of its
results for the training and the prediction sets are
compared with the MSEs of the regression models
for different stationary phases in Table 6. Com-
parison of the MSEs shows the superiority of the
ANN model over that of the MLRs. This indicates
that some of the descriptors appearing in the MLR

0.156

Table 6
Comparison of the MSEs for the results obtained using the ANN
and the regression models

Column® MSE

Training Prediction

MLR ANN MLR ANN
EGAD 0.020 0.005 0.021 0.010
THPED 0.024 0.005 0.016 0.005
U50HB 0.022 0.006 0.018 0.005
DEHPA 0.021 0.004 0.019 0.010
QBES 0.027 0.007 0.012 0.009

® Definition of the columns is given in Table 4.

models interacts with each other and on the whole
the retention behavior of the molecules on different
columns show some nonlinear characteristics.

The calculated ANN values of log K, of the
prediction set are plotted against the experimental
values for different columns in Fig. 2. As shown in
this figure, all values fit the regression lines indicat-
ing the ability of the ANN in predicting of the
retention behavior of organic compounds on the
commonly used stationary phases. Fig. 3 shows the
propagation of residuals. Since the residuals are
propagated on both sides of the zero line, there is no
systematic error in developing of the ANN model. In
order to compare the ANN results with the results
obtained by using the solvatochromic model and the

0.1}

MSE

0.05

0 10000 20000

30000 40000 50000

Number of Iteration
—Prediction Set ==Training Set

Fig. 1. Variations of MSE vs. the number of iterations for the training and the prediction sets.
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Fig. 2. Plot of the calculated values of the log K, for the prediction set against the experimental values.

MLR models generated in this work, the correlation these results indicate the superiority of the ANN

coefficients between the calculated and the ex- model over that of the MLR model.
perimental values are given in Table 7. Inspection of From the results obtained in this paper one may
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Fig. 3. Plot of residuals vs. experimental values of log K, .
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Table 7
Correlation coefficients between the experimental and the calcu-
lated values of log K for different columns

Column Training Prediction

r SE r SE
EGAD 0.993 0.087 0.988 0.118
THPED 0.992 0.094 0.990 0.105
U50HB 0.990 0.102 0.993 0.091
DEHPA 0.995 0.081 0.981 0.153
QBES 0.988 0.110 0.986 0.144

conclude that the parameters of DIPOL, HOMO,
PCHNEG, PCHPOSH, VOLUME and M, can be
considered as comprehensive descriptors for predict-
ing of the partition coefficient of a variety of
molecules on different columns. Also, the ex-
perimental solvatochromic parameters proposed by
Abraham can be replaced by the calculated de-
scriptors developed in this work [20].
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